19 research outputs found

    Malignant Catarrhal Fever Induced by Alcelaphine herpesvirus 1 Is Associated with Proliferation of CD8+ T Cells Supporting a Latent Infection

    Get PDF
    Alcelaphine herpesvirus 1 (AlHV-1), carried by wildebeest asymptomatically, causes malignant catarrhal fever (WD-MCF) when cross-species transmitted to a variety of susceptible species of the Artiodactyla order. Experimentally, WD-MCF can be induced in rabbits. The lesions observed are very similar to those described in natural host species. Here, we used the rabbit model and in vivo 5-Bromo-2′-Deoxyuridine (BrdU) incorporation to study WD-MCF pathogenesis. The results obtained can be summarized as follows. (i) AlHV-1 infection induces CD8+ T cell proliferation detectable as early as 15 days post-inoculation. (ii) While the viral load in peripheral blood mononuclear cells remains below the detection level during most of the incubation period, it increases drastically few days before death. At that time, at least 10% of CD8+ cells carry the viral genome; while CD11b+, IgM+ and CD4+ cells do not. (iii) RT-PCR analyses of mononuclear cells isolated from the spleen and the popliteal lymph node of infected rabbits revealed no expression of ORF25 and ORF9, low or no expression of ORF50, and high or no expression of ORF73. Based on these data, we propose a new model for the pathogenesis of WD-MCF. This model relies on proliferation of infected CD8+ cells supporting a predominantly latent infection

    The A5 gene of alcelaphine herpesvirus 1 encodes a constitutively active G-protein-coupled receptor that is non-essential for the induction of malignant catarrhal fever in rabbits.

    No full text
    Many gammaherpesviruses encode G-protein-coupled receptors (GPCRs). Several in vivo studies have revealed that gammaherpesvirus GPCRs are important for viral replication and for virus-induced pathogenesis. The gammaherpesvirus alcelaphine herpesvirus 1 (AlHV-1) is carried asymptomatically by wildebeest, but causes malignant catarrhal fever (MCF) following cross-species transmission to a variety of susceptible species. The A5 ORF of the AlHV-1 genome encodes a putative GPCR. In the present study, we investigated whether A5 encodes a functional GPCR and addressed its role in viral replication and in the pathogenesis of MCF. In silico analysis supported the hypothesis that A5 could encode a functional GPCR as its expression product contained several hallmark features of GPCRs. Expression of A5 as tagged proteins in various cell lines revealed that A5 localizes in cell membranes, including the plasma membrane. Using [35S]GTPgammaS and reporter gene assays, we found that A5 is able to constitutively couple to alpha i-type G-proteins in transfected cells, and that this interaction is able to inhibit forskolin-triggered cAMP response element-binding protein (CREB) activation. Finally, using an AlHV-1 BAC clone, we produced a strain deleted for A5 and a revertant strain. Interestingly, the strain deleted for A5 replicated comparably to the wild-type parental strain and induced MCF in rabbits that was indistinguishable from that of the parental strain. The present study is the first to investigate the role of an individual gene of AlHV-1 in MCF pathogenesis.Journal ArticleResearch Support, Non-U.S. Gov'tSCOPUS: ar.jinfo:eu-repo/semantics/publishe
    corecore